Mark Scheme (Results) January 2011

GCE Chemistry (6CH02/ 01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http:// www.edexcel.com/ Aboutus/ contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: 08445760037

January 2011
Publications Code USO26197
All the material in this publication is copyright
© Edexcel Ltd 2011

Section A (multiple choice)

Question Number	Correct Answer	Mark
1	D	1
Question Number	Correct Answer	Mark
2	C	1
Question Number	Correct Answer	Mark
3	A	1
Question Number	Correct Answer	Mark
4	B	1
Question Number	Correct Answer	Mark
5	D	1

Question Number	Correct Answer	Mark
6 (a)	B	1

Question Number	Correct Answer	Mark
6 (b)	A	1

Question Number	Correct Answer	Mark
7 (a)	C	1

Question Number	Correct Answer	Mark
7 (b)	B	1

Question Number	Correct Answer	Mark
7 (c)	C	1

Question Number	Correct Answer	Mark
7 (d)	B	1

Question	Correct Answer	Mark
Number	D	1
8		

Question Number	Correct Answer	Mark
9	D	1

Question Number	Correct Answer	Mark
$10(\mathrm{a})$	C	1

Question Number	Correct Answer	Mark
$10(\mathrm{~b})$	D	1

Question Number	Correct Answer	Mark
11 (a)	D	1

Question	Correct Answer	Mark
Number	C	1
11 (b)	C	

Question Number	Correct Answer	Mark
11 (c)	D	1

Question Number	Correct Answer	Mark
11 (d)	B	1

Question Number	Correct Answer	Mark
12	A	1

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Acceptable Answers	Reject	Mark
13 (a) (i)	Each mark is independent Diagram of separating funnel with tap. Sdes can be straight or bulbous. Top can be stoppered or unstoppered, but not sealed (eg inverted test- tube with tap at bottom).	Filter funnel with tap	(1)
	Allow straight sides with an open top Two layers. Upper layer is hydrocarbon layer (1) Colour -pink/ purple/ mauve. Allow violet (1)	Three layers Mention of any other colours on their own (e.g. grey, brown, red. or in combination with those accepted.	

Question Number	Acceptable Answers	Reject	Mark		
13 (a) (ii)	$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$ Ignore state symbols Allow multiples/ half amounts shown Accept answers involving I${ }^{-}$			\quad Formation of Fe^{+}	1
:---					

Question Number	Acceptable Answers	Rej ect	Mark
13 (b)(i)	Answers must refer to oxidation/ reduction Sulfuric acid oxidizes (hydrogen/ potassium) iodide (to iodine) OR (hydrogen) iodide reduces sulfuric acid	Sulfuric acid oxidizes iodine/ oxidizes iodide to iodide	1
	OR Phosphoric((V)) acid does not oxidize (hydrogen) iodide (to iodine) (as well as sulfuric acid does)	Phosphoric acid is a better reducing agent	Allow sulfuric acid is a strong(er)/ good oxidizing agent/phosphoric(V) acid is a weaker oxidizing agent
Comments about hazards or strength of sulfuric acid alone Stability of phosphoric(V) acid alone			

Question Number	Acceptable Answers	Reject	Mark
13 (b) (ii)	Water rises in the test tube	Steamy fumes Any coloured solutions forming even if with the acceptable/ allowed answer	1

Question Number	Acceptable Answers	Reject	Mark
13 (b) (iii)	$\mathrm{NH}(\mathrm{g}) /(\mathrm{aq})+\mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{I}(\mathrm{s})$ Species and balanced equation (1) Allow $\mathrm{NH}_{4}{ }^{+}+\mathrm{I}^{-}$for product All state symbols present (dependent on the entities above) (1) $\mathrm{NH}_{3} \mathrm{I}$ $\mathrm{NH}_{3} \mathrm{HI}$ 2 NHH_{4}		

Question Number	Acceptable Answers	Reject	Mark
13 (c) (i)	$\mathrm{PI}_{3}+3 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \rightarrow 3 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}+\mathrm{H}_{3} \mathrm{PO}_{3}$ Accept multiples Allow $\mathrm{P}(\mathrm{OH})_{3}, \mathrm{PH}_{3} \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{O}+\mathrm{HPO}_{2}$, as product/s		1

Question Number	Acceptable Answers	Reject	Mark
13 (c) (ii)	Both points required Van der Waals'/ London / dispersion / induced dipole / temporary dipole (forces) in 1-iodobutane Allow recognisable spelling of van der Waals' and (permanent) dipole dipole/ permanent dipole (forces) Allow dipolar-dipolarAny mention of hydrogen bonding (0)	1	

Question Number	Acceptable Answers	Reject	Mark
13 (c) (iii)	Yellow precipitate / ppt / ppte / solid The answer may appear with additional words and phrases: e.g. two clear colourless solutions form a yellow precipitate which is insoluble in concentrated ammonia solution	Off-white Cream Any other colours and combinations of yellow with any other colours Any other qualifications of yellow eg pale/light Any answers which include bubbles, fizzing, effervescence	1
Allow bright yellow, sunshine yellow			

Question Number	Acceptable Answers	Rej ect	Mark
13 (c) (iv)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \\ & / \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2} \\ & / \mathrm{CH}_{2}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ & / \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ & / \mathrm{H}_{2} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ & /\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH} \\ & /\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{~N}\right. \end{aligned}$ Allow displayed and skeletal formulae, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}$ Salts of amines which must include a positively charged ion and I^{-}	$\mathrm{NH}_{4} \mathrm{I}$ NH_{3} instead of NH_{2} Three carbon chains Missing hydrogens $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$	1

Question Number	Acceptable Answers	Reject	Mark
14 (a) (i)	H x xx H.x C.x O.xH .x xx H Allow all dots / crosses, combinations of dots, crosses and other symbols like triangles Allow extra inner electrons around carbon and / or oxygen	Missing symbols electrons	1

Question Number	Acceptable Answers	Reject	Mark
14 (a) (ii)	Each mark is independent of the next unless the bond angle is greater than 119° $109^{\circ} / 109.5^{\circ}$ (1) Minimum repulsion / maximum separation (between four bond pairs of electrons / bonds) (1)	Four bond pairs give tetrahedral shape	4
104° —105ㅇ(1)			
(Two) lone pairs / non-bonding pairs (of electrons) repel more (than bonding pairs)/ repel a lot (1)			

Question Number	Acceptable Answers	Rej ect	Mark
14 (a) (iii)	 Correct atoms in the hydrogen bond ($\mathrm{O}-\mathrm{H}^{\circ} \mathrm{O}$) (1) Allow CH_{3} groups not displayed, correct ethanol formulae. Hydrogen bond can be shown as dots horizontal or vertical dashes. If it is a bond-like line it must be labelled. Second mark dependent on correct atoms involved. O-H. . O in straight line (within small tolerance) and 180° bond angle given in the correct place (1)	Hydrogen bond between methanol and water does not score	2

Question Number	Acceptable Answers	Reject	Mark
14 (b) (i)	Any two from: Bubbles/ fizzing / effervescence (of gas) forming (1) Sodium / solid disappearing / dissolving (to form a clear colourless solution) (1) White solid / precipitate forming (1)	Vigorous reaction	White solution/ fumes form Clear colourless solution forms alone

Question Number	Acceptable Answers	Reject	Mark		
14 (b) (ii)	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{Na} \rightarrow \mathrm{CH}_{3} \mathrm{O}^{(-2} \mathrm{Na}^{(+)}+1 / 2 \mathrm{H}_{2}$ Allow multiples, NaOCH as product, ethanol as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ with sodium ethoxide as product, lgnore state symbols and chargesNa^{+}as reactant $\mathrm{CH}_{3} \mathrm{O}-\mathrm{Na}$	1			
$\mathrm{CH}_{3} \mathrm{NaO}$ or $\mathrm{NaCH}_{3} \mathrm{O}$				\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
14 (c) (i)	$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} /$ Sodium / potassium dichromate((VI)) (1) Allow recognisable spelling of potassium and dichromate If name and formula given, both must be correct. $\mathrm{H}_{2} \mathrm{SO}_{4} /$ (Dilute / concentrated) sulfuric acid (1) Second mark dependent on recognisably correct oxidizing agent Allow acidified / H^{+}and dichromate $((\mathrm{VI})) / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ for 1 mark Allow potassium manganate((VII)) and dilute sulfuric acid for 1 mark	Other oxidation numbers Potassium/ sodium dichromate(VI) ions Other acids e.g. hydrochloric, nitric, phosphoric Other oxidation numbers	2

Question Number	Acceptable Answers	Reject	Mark
14 (c) (ii)	Reflux apparatus or reflux followed by distillation scores 0	2	
Round-bottomed/ pear shaped flask with heat			
Still head (1)			
Delivery tube and exit above/ in (cooled) collection vessel (1) Open still head	A condenser may be included Sealed apparatus (max. 1)		

Question Number	Acceptable Answers	Reject	Mark
14 (c) (iii)	Mark independently (Permanent) dipole dipole/ permanent dipole (forces) in ethanal (1) Ethanal higher because both compounds have (similar) London / van der Waals'/ etc forces OR no (permanent) dipole dipole / permanent dipole (forces) in propane OR propane (only) has London / van der Waals' / etc forces (1)	Ethanal has hydrogen bonds loses first mark only	2

Question Number	Acceptable Answers	Reject	Mark
15 (a) (i)	Pestle (and mortar) / mortar and pestle	Anything else, including hammer, mallet, heavy metal object, spatula, glass rod, crusher, grinder	1

Question Number	Acceptable Answers	Reject	Mark
15 (a) (ii)	Methyl / methly orange (1)	Litmus, Universal Indicator score 0/2	2
	Accept other acid-base indicators eg phenolphthalein (1) Accept recognisable spelling for all acid-base indicators Correct colour change, the correct way round, to end point or beyond (1)	(1)	

Question Number	Acceptable Answers	Rej ect	Mark
15 (b) (i)	(11.20 and 11.40 give) $11.3(0)\left(\mathrm{cm}^{3}\right)$		1

Question Number	Acceptable Answers	Rej ect	Mark
15 (b) (ii)	$\frac{11.3 \times 0.300}{1000}=3.39 \times 10^{-3} / 0.00339(\mathrm{~mol})$ If mean titre value is 11.47 then 3.44×10^{-3}	Ignore SF unless only one, in which case penalise this only once.	1

Question Number	Acceptable Answers	Reject	Mark
15 (b) (iii)	$3.39 \times 10^{-3}(\mathrm{~mol})$ Or answer to (ii)		1

Question Number	Acceptable Answers	Reject	Mark
15 (b) (iv)	$3.39 \times 10^{-2}(\mathrm{~mol})$ answer (iii) $\times 10$		1

Question Number	Acceptable Answers	Reject	Mark
$15(\mathrm{~b})(\mathrm{v})$	$0.05-0.0339=0.0161(\mathrm{~mol})$ Or $0.05-($ answer to (iv)) If mean titre value is 11.47 then 0.0156		1

Question Number	Accept able Answers	Reject	Mark
$15(\mathrm{~b})(\mathrm{vi})$	$0.00805(\mathrm{~mol})$ Or answer to (v) divided by 2 If mean titre value is 11.47 then 0.0078		1

Question Number	Accept able Answers	Rej ect	Mark
$15(\mathrm{~b})(\mathrm{vii})$	0.00805×100 $=0.805(\mathrm{~g}) / 805 \mathrm{mg}$ Or answer to (vi) x 100 If mean titre value is 11.47 then 0.780		1

Question Number	Accept able Answers	Rej ect	Mark
15 (b) (viii)	Reason -there must be some other ant acid present / subst ance/ chemical which reacts with acid	Experiment al / calculation error	1

Section C

Question Number	Acceptable Answers	Rej ect	Mark
16 (a)	1 Reaction 1: C goes from -4 to +2, 2 H from +1 to 0 (redox reaction) 3 Reaction 2: C goes from +2 to +4 4 H from +1 to 0 (redox reaction) Allow from 2(+1) to 0 For each mark both correct oxidation states are needed Additional incorrect oxidation numbers of oxygen lose 1 mark per reaction Allow number followed by charge Penalise missing plus signs only once Penalise wrong use of the terms reduced and oxidized only once Penalise correct oxidation states and not a redox reaction only once 5 Reaction 3 no (elements) change (oxidation number)/ details for carbon / hydrogen calculated AND so this is not a redox reaction OR Redox mentioned in reactions 1 and 2 but 'not redox' omitted in reaction 3	H from +2 to 0 H from +2 to 0	5

Question Number	Acceptable Answers	Rej ect	Mark
*16 (b) (i)	Any seven from:		7
	1 A higher temperature would increase the yield / favour the forward reaction / produce more hydrogen...		
	2 ...(as) the reaction is endothermic (1)		
	3 Increased temperature would increase the rate/ speed of reaction / make the reaction go faster...		
	4 ..(as) a greater proportion of / more molecules have sufficient / higher/ activation energy (to react)	'More (successful) collisions' alone	
	5 Decreased pressure increases the yield / favour the forward reaction / produce more hydrogen... (1)		
	6...(as) the forward reaction is favoured with more (gaseous) molecules / mole		
	7 Decreased pressure would decrease the rate of reaction...		
	8 ..(as) collision frequency decreases/ less collisions		
	Points may muddle into one another		
	Reverse statements allowed e.g. 'lower temperature decreases yield because reaction is endothermic'.		
	Contradictory statements in each pair lose both marks e.g. 'lower temperature increases yield because reaction is endothermic'.		

Question Number	Acceptable Answers	Reject	Mark
16 (b) (ii)	An excess is used to drive the equilibrium to the right / to ensure all the methane reacts (as the reaction responds to remove steam by Le Chatelier's principle) (1)	..to get a better yield of hydrogen / to allow reaction to happen fully / so all the reactants react / to make the reaction go to completion	2
	Methane is more expensive (so it is better to increase the amount of steam) / steam is cheaper /readily available / renewable OR	Methane is not renewable (1)	Mrenhe is a greenhouse gas / dangers associated with methane e.g. flammable

Question Number	Acceptable Answers	Reject	Mark
16 (c)	The catalyst provides an alternative route for the reaction (1) (with) a lower activation energy (1) Allow 'catalyst lowers activation energy' alone for one mark		2

Question Number	Acceptable Answers	Reject	Mark
16 (d) (i)	It regenerates /reforms potassium carbonate /reactant(s) (which reduces the cost of the process)	Regenerates some of the other reactants. Chemicals are regenerated	1
OR potassium carbonate can be re-used Allow recycles potassium carbonate			

Question Number	Acceptable Answers	Rej ect	Mark
*16 (d) (ii)	1 Carbon dioxide / CO_{2} Allow both water and carbon dioxide 2 Traps longer wavelength radiation / traps radiation / IR emitted (from the earth) OR Absorbs/ traps heat / IR OR Prevents loss of IR/ heat 3,4 Any two from: Rising sea levels / flooding Polar ice / ice caps / glacier(s) / glacial / habitat ice melting Changing (sea / air) currents Changing weather patterns / more extreme weather / climate change Other acceptable alternatives only if well justified e.g. more malaria because more breeding areas for mosquitoes But more malaria / desertification / forest fires alone is insufficient Three or more correct answers get 2 marks Three or more answers, where some are wrong, are marked 1 mark for each correct answer and -1 mark for each incorrect answer e.g. Two correct and one wrong award 1 mark Three correct and two wrong award 1 mark etc One on list and one wrong award 1. Ignore neutral statements	Water alone Mark is lost if any mention of UV / ozone layer depletion Absorbs IR/ heat from the sun Increased UV Increased skin cancer/melanoma	4

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@inneydirect.com
Order Code US026197 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

